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a b s t r a c t

An important cause of sound radiation from a submarine in the low frequency range is

fluctuating forces at the propeller. The forces are transmitted to the hull via the shaft and

the fluid. Sound radiation occurs due to hull and propeller vibrations as well as dipole

sound radiation caused by the operation of the propeller in a non-uniform wake. In order

device known as a resonance changer can be implemented in the propeller/shafting

system. In this work, cost functions that represent the overall radiated sound power are

investigated, where the virtual stiffness, damping and mass of the resonance changer were

chosen as design parameters. The minima of the cost functions are found by applying

gradient based optimisation techniques. The finite element and boundary element

methods are used to model the structure and the fluid, respectively. The adjoint operator is

employed to calculate the sensitivity of the cost function to the design parameters. The

influence of sound radiation due to propeller vibration on the optimisation of the

resonance changer as well as the influence of the reduction in amplitude for higher

harmonics of the blade-passing frequency on the control performance is investigated.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

As a submarine is subject to detection by passive sonar, reduction of the overall radiated sound power is desired. A
significant proportion of the radiated sound power is caused by operation of the propeller in a spatial non-uniform wake
[1,2]. As the propeller blades pass through sections of different volume flow rate, they experience a temporal variation in
drag. This results in a harmonically varying force on the propeller shaft as well as a harmonically varying pressure field
originating from the propeller, at the blade-passing frequency (bpf) and its multiples. The propeller pressure field as well as
the structural force can excite hull accordion modes, which are efficient sound radiators [3]. Furthermore, the structural
force causes axial vibration of the propeller/propulsion system, leading to additional sound radiation from the propeller
and hence re-excitation of the pressure hull. The sound power radiated by the submarine is due to the combination of the
sound fields radiated by the propeller and the hull.

In order to reduce the radiated sound power, a vibro-acoustic model of the submarine and sea water has been developed
to minimise a cost function that represents the radiated sound power over a given frequency range [4]. For cruise speeds
where no cavitation at the propeller tips occurs, the frequency range up to 100 Hz is of interest, where the first four
harmonics of bpf are taken into account. The complete frequency spectrum needs to be considered for optimisation
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procedures, as the bpf varies with cruise speed. The fluctuating forces at the propeller are assumed to be harmonic and
linear. Hence, the analysis has been conducted in the frequency domain using the Helmholtz equation for the exterior
radiation/scattering problem. The submarine is a complex, non-homogeneous structure, but its different parts may be
represented by simplified physical models such as shells, rods and spring–mass–damper systems. The numerical approach
used here to solve the strong fully coupled structure/fluid problem in the low frequency range, where the densities of the
structure and the fluid are of similar order, is the combination of the finite element (FE) method to represent the structure
and the boundary element (BE) method to represent the fluid [5–7].

The propeller/shafting system comprises the propeller, propeller shaft, thrust bearing, foundation and a device known
as a resonance changer (RC), which acts as a dynamic hydraulic vibration absorber. Goodwin suggested to tune the RC such
that its natural frequency equals that of the propeller/shafting system [8]. Dylejko developed simplified, analytical
submarine models to find optimum design parameters for different RC configurations in order to minimise the maximum
radiated sound pressure rather than the overall radiated sound power [9,10]. A genetic optimisation strategy was used for
the optimisation process. Due to simplifications in the analytical models such as omission of the tailcone and pressure field
from the propeller, the complex interaction between the propeller and the submarine hull was not taken into account.

In contrast to analytical methods, numerical methods allow for the development of more detailed and complex
structural models. However, the computational cost is much higher and non-gradient based optimisation methods such as
genetic algorithms used in Ref. [10] are not viable. Hence, gradient based optimisation techniques are preferred and the
sensitivity of the cost function to structural design parameters is computed. In previous work by the authors, the structural
and acoustic responses of a submarine were presented for fixed parameters of the RC, where excitation of the submarine
hull due to fluid forces was taken into account [11]. In this paper, the focus is on optimising the RC parameters of a
submarine model, where the significance of hull excitation due to propeller forces via the fluid is of particular interest.
Numerical models of the sound power radiated by a submarine are presented, where the sensitivity of the weighted sound
power over the relevant frequency range to design parameters of the propeller/shafting system has been computed. The
sensitivity is obtained in a semi-analytical way by employing the adjoint operator [4]. Optimum parameters are found for
the virtual stiffness, damping and mass of the RC by applying the globally convergent method of moving asymptotes [12].

2. Simplified physical model of the submarine

A simplified physical model of a submarine has been developed previously by the authors as shown in Fig. 1 [11]. The
pressure hull was modelled as a thin-walled cylinder with evenly spaced ring-stiffeners of rectangular cross-section and
two evenly spaced circular plates that represent the bulkheads. As the end plates of a submarine pressure hull are stiff in
comparison to other parts, they have been modelled as rigid plates. In order to account for the contribution of the on-board
machinery and internal structure to the dynamic behaviour of the submarine, a distributed mass has been attached to the
cylindrical shell of the pressure hull.

The propeller/shafting system was modelled in a modular manner as shown in Fig. 2 [9], where the propeller force and
velocity amplitude are given by fp and vp, respectively. The hull drive point force and velocity are denoted by fh and vh. The
propeller as well as the added mass effect of the surrounding water for the propeller are represented by a lumped mass mp.
The propeller dimensions for calculating the propeller mass and the fluid loading effect are chosen by assuming that the
propeller volume is 1

1000 of the volume displaced by the pressure hull. The propeller diameter is assumed to be half the
pressure hull diameter. The propeller shaft was modelled as a simple rod with an effective length lse and an overall length ls
as shown in Fig. 2, where the overhang was represented by a lumped mass. The shaft properties are also defined by its cross-
sectional area As, Young’s modulus Es and density rs. The thrust bearing was assumed to act as a spring–mass–damper
system with mass mb, damping coefficient cb and spring constant kb. For the present model, the thrust bearing is attached to
a single resonance changer that has been modelled as a spring–mass–damper system according to Goodwin [8]. The RC is
represented by virtual mass, damper and spring parameters, which are calculated by [8]

mr ¼
rrA2

0L

A1
; cr ¼ 8pmL

A2
0

A2
1

; kr ¼
A2

0B

V
: (1)
Propeller

Propeller shaft
Foundation
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Fig. 1. Simplified physical model of the submarine.
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Fig. 2. Modular approach for the propeller/shafting system [9].
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rr is the density of the hydraulic medium, m is the dynamic viscosity and B is the bulk modulus of the oil in the RC. V is the
volume of the reservoir, A1 is the cross-sectional area of the pipe, L is the pipe length and A0 is the cross-sectional area of
the cylinder.

The foundation is simplified as a truncated cone for the axisymmetric model with end radii a and b as shown in Fig. 2.
Young’s modulus, density, Poisson’s ratio and thickness of the foundation are given by Ef , rf , nf and hf , respectively.

An analytical model for the sound field radiated by the propeller is presented in Ref. [11]. The sound field is the
combination of contributions from (i) the hydrodynamic mechanism that arises from the propeller operating in a non-
uniform wake and (ii) the axial fluctuation of the propeller due to vibration of the propeller/shafting system. The sound
radiation that corresponds to the axial force on the propeller hub is given by the dipole

pðr; yÞ ¼ jkgðrÞf 1�
j

kr

� �
DðyÞ; (2)

where k is the fluid wavenumber, y is the angle between the field point direction and the force direction, f is the
amplitude of the exciting force, r is the distance between the source and the field point, DðyÞ ¼ cosy is the directivity
function and

gðrÞ ¼
e�jkr

4pr
(3)

is the free space Green’s function.
The contribution due to (ii) resulting from vibration of the propeller can be computed using a rigid disc approximation.

The pressure is also given by Eq. (2) and the directivity function is [13]

DðyÞ ¼
2J1ðkasinyÞ

kacosy
� cosy; small ka; (4)

where J1 is the first-order Bessel-function and a is the disc radius. The force acting on the fluid is obtained in terms of the
axial propeller velocity vp by

f ¼ 2szczavp; (5)

where s ¼ pa2 is the area of the disc surface, zc is the characteristic impedance of the fluid and za is the radiation
impedance. The radiation impedance can be expressed as the sum of its real and imaginary parts, corresponding to the
resistance ra and the reactance xa, respectively. The resistance and reactance can be obtained under the assumption that a
freely suspended disc has twice the admittance of a disc in an infinite baffle [14]. For small ka, this gives

ra ¼
8ðkaÞ4

27p2
; xa ¼

4ka

3p : (6)

3. Numerical modelling

3.1. Combined FE/BE model

In this work, the radiated sound power from a coupled vibro-acoustic system with additional discrete sources in the
fluid domain has been evaluated. This was accomplished by representation of the structure using finite elements and
representation of the fluid using boundary elements, where strong coupling is considered at the structure/fluid interface
[11]. Strong coupling involves the acoustic medium influencing the dynamic behaviour of the structure, as the densities of
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fluid and structure are of similar order. Under the assumption that an acoustically hard surface is present, the continuity
condition requires that the displacement of the fluid equals the displacement of the structure normal to the surface. In
addition, the pressure of the fluid results in an external distributed force on the structure normal to the surface. The
combined problem is mathematically expressed as

SðoÞxðoÞ ¼ yðoÞ; (7)

where the linear operator S is composed of the BE and FE system matrices and the geometric coupling matrices. The
unknown vector x contains the nodal displacements of the FE model as well as the acoustic pressure at the collocation
points for the BE model, and can be found by formally inverting S. The vector y represents the exciting structural forces
and contributions from fixed sources in the acoustic domain. o is the radian frequency. The pressure field radiated from t
he propeller due to axial vibration of the propeller is considered in the system matrix S, as it depends on the axial
velocity of the propeller hub. The structural force at the propeller hub and the correlated pressure field due to the
operation of the propeller are considered in the vector y. The scattering of the propeller pressure field by the hull and the
re-excitation of the hull due to the propeller pressure field is taken into account. The influence of the acoustic pressure
field due to hull vibration on the propeller forces is, however, neglected. For the models presented in this work, non-
matching meshes have been used. This requires a piecewise relaxation of the continuity condition by means of mortar
elements [15].

3.2. Radiated sound power

The sound power radiated through a surface L is given by [16]

PðoÞ ¼ 1

2

Z
L

pðoÞv�ðoÞdL; (8)

where p is the acoustic pressure of the fluid and v is the normal velocity of a fluid particle at the surface. As the radiated
sound power of the discrete sources in the fluid domain is not implicitly known, a surface enclosing the sources and the
structure has to be chosen in order to evaluate the overall radiated sound power. If the surface L is spherical and in the far
field with respect to the sound sources, then Eq. (8) simplifies to [17]

PðoÞ � 1

2rc

Z
L

pðoÞp�ðoÞdL; (9)

where r is the density of the fluid and c is the speed of sound. The sound pressure can be expressed as a piecewise
interpolation, where the pressure is given at a set of discrete points. For the purpose of integration, Gaussian integration
points are chosen to interpolate the pressure. A discrete version of Eq. (9) is obtained, by considering the fluid and
geometry properties of the surface L in a matrix

PðoÞ ¼ pHðoÞHpðoÞ; (10)

where the superscript ‘H’ denotes the conjugate transpose. If x is known, then the vector of discrete pressures p on the
surface L can be explicitly obtained by [18]

pðoÞ ¼ TðoÞxðoÞ þ pincðoÞ: (11)

The transfer matrix T is obtained by integration over the vibrating surface of the structure and pinc represents the pressure
contribution from discrete sources in the fluid domain at the integration points of the surface L.

3.3. Sensitivity analysis

The sensitivity of the radiated sound power to a set of structural design parameters ! of the vibrating structure, that do
not have an influence on the scatterer’s surface geometry, is obtained by differentiation of Eq. (10). Omitting the o
dependence, this can be written as

qP
q!
¼ 2pHH

qp

q!
: (12)

The sensitivity of the pressure at the integration points with respect to the design parameters is obtained by differentiation
of Eq. (11)

qp

q!
¼ T

qx

q!
: (13)

In order to obtain an expression for the sensitivity of the vector x with respect to the design parameters, Eq. (7) has to be
differentiated which yields

S
qx

q!
þ

qS

q!
x ¼

qy

q!
: (14)
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Eq. (14) can then be reordered such that an expression for the sensitivity of the vector x with respect to the design
parameters is obtained and is given by

qx

q!
¼ S�1 qy

q!
�

qS

q!
x

� �
: (15)

In order to compute the sensitivity of the sound power, Eqs. (12)–(14) can be combined in an adjoint operator formulation [4]

qP
q!
¼ 2pHHTS�1 qy

q!
�

qS

q!
x

� �
: (16)

Let bT
¼ 2pHHT and zT ¼ bTS�1, then the sensitivity of the sound power can be found for any set of parameters !, as long as

the solution of the system of equations STz ¼ b is known. This means that for an arbitrary number of structural design
parameters, only two systems of equations have to be solved.

3.4. Optimisation

For optimisation of the resonance changer parameters, the following cost function has been defined to represent the
radiated sound power over the frequency range of interest [4]

J ¼
1

Do

Z
o
PðoÞdo: (17)

The gradient of the cost function can be obtained by differentiating Eq. (17) with respect to the design parameters

qJ

q!
¼

1

Do

Z
o

qPðoÞ
q!

do: (18)

The problem of minimising the radiated sound power can be written as

minimise Jð!Þ subject to !r!r! ; (19)

where ! and ! are the lower and upper bounds for the design parameters, respectively. As the first derivatives of the cost
function J with respect to the design parameters ! are explicitly available, an appropriate family of methods to find local
minima are the quasi-Newton algorithms [19]. An example of such an algorithm that is applicable to Eq. (19) is the limited
memory Broyden–Fletcher–Goldfarb–Shanno algorithm with parameter bounds (L-BFGS-B) [20]. However, applying the
L-BFGS-B directly to Eq. (19) can require a large number of computationally expensive cost function evaluations. In
addition, the process can get easily trapped in a numerically related local minimum. In order to reduce the number of
required evaluations of J and qJ=q!, an iterative algorithm can be applied, where the problem is locally approximated by an
explicit subproblem

minimise Fð!ÞðkÞ subject to ! ðkÞr!r!
ðkÞ

(20)

for an iteration point k. The subproblem is solved using the L-BFGS-B. The optimum parameters for the subproblem
represent the next iteration point and the formulation for the next subproblem is modified based on data from previous
iterations. The iteration is stopped when certain convergence criteria are fulfilled. An example for this approach is the
method of moving asymptotes (MMA), where asymptotes are used to approximate the cost function [21]. For the algorithm
used in this paper, inner iterations l are conducted in addition to the outer iterations k. This approach is called the globally
convergent method of moving asymptotes (GCMMA) [12]. The cost function is approximated near the iteration points using

Fð!Þðk;lÞ ¼
Xn

i¼1

qðk;lÞi

WðkÞi � Wi þ sðkÞi

þ
rðk;lÞi

Wi � WðkÞi þ s
ðkÞ
i

�
qðk;lÞi þ rðk;lÞi

sðkÞi

 !
þ Jð!ðkÞÞ; (21)

where n represents the number of parameters, i is the index for a parameter, !ðkÞ represents the optimal solution from the
last outer iteration step and rðkÞ are the moving asymptotes. The asymptotes are moved after each outer iteration. If the
process oscillates, the asymptotes are moved closer to the iteration point to make the approximation more conservative. In
contrast, if the process is slow, the asymptotes are moved away from the iteration point. The coefficients qðk;lÞi and rðk;lÞi are
given by

qðk;lÞi ¼ ðsðkÞi Þ
2max 0;

qJi

qWi
ð!ðkÞÞ

� �
þ
cðk;lÞsðkÞi

4
; (22)

rðk;lÞi ¼ ðsðkÞi Þ
2max 0;�

qJi

qWi
ð!
ðkÞ
Þ

� �
þ
cðk;lÞsðkÞi

4
; (23)

where the parameter cðk;lÞ is adjusted for the inner iteration in order to achieve global convergence. This is accomplished by
increasing cðk;lÞ until Jð!̂

ðk;lÞ
Þ is smaller than Fð!̂

ðk;lÞ
Þ, where !̂

ðk;lÞ
denotes the optimal solution for the subproblem of the

inner iteration. Subsequently !̂
ðk;lÞ

becomes the next outer iteration point !ðkÞ. Rules for updating the parameters rðkÞ and
cðk;lÞ and for the definition of ! ðkÞ and !

ðkÞ
can be found in Ref. [12].
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4. Results

Results are presented for the optimisation of the RC virtual damping, stiffness and mass parameters using different cost
functions. Results are also given for the sensitivity of some cost functions to these parameters near the optimum. ANSYS 11
was used to generate the FE and BE meshes and to compute the FE stiffness, mass and damping matrices. All other
computations were conducted using software implemented in SciPy and Cþþ. For efficient generation of the results, the
calculation of the cost function has been parallelised with respect to the frequency using the message passing interface
(MPI), by employing a method similar to that described in Ref. [22]. Integration over the frequency range was implemented
in an adaptive manner by comparing results for the Simpson rule to results for the trapezium rule. A minimum number of
210 integration points was used. System matrices that are independent of the design parameters have been precomputed
and stored in a database at a step size of 0.1 Hz.

Properties of the submarine’s propeller/shafting system and hull are given in Tables 1 and 2, respectively. By taking into
account physical feasibility as described in Ref. [10], the RC virtual damping was varied between 5� 103 and 1:1� 106 kg=s.
Ranges from 1:5� 107 to 1:5� 109 N=m and from 1 to 20 tonnes were chosen for the RC virtual stiffness and mass,
respectively.
Table 1
Properties of the propeller/shafting system.

Parameter Value Unit

Propeller diameter 3.25 m

Propeller structural mass 10 tonnes

Propeller added mass of water 11.443 tonnes

Shaft Young’s modulus 200 GPa

Shaft Poisson’s ratio 0.3

Shaft density 7800 kg=m3

Shaft cross-sect. area 0.071 m2

Shaft length 10.5 m

Effective shaft length 9 m

Bearing mass 0.2 tonnes

Bearing stiffness 2� 1010 N/m

Bearing damping 3� 105 kg/s

Resonance changer mass 1 tonne

Foundation major radius 1.25 m

Foundation minor radius 0.52 m

Foundation half angle 15 deg

Foundation thickness 10 mm

Foundation Young’s modulus 200 GPa

Foundation density 7800 kg=m3

Table 2
Properties of the hull.

Parameter Value Unit

Cylinder length 45.0 m

Cylinder radius 3.25 m

Shell thickness 0.04 m

Stiffener cross-sectional area 0.012 m2

Stiffener spacing 0.5 m

Young’s modulus of structure without foundation 210 GPa

Young’s modulus of foundation 200 GPa

Poisson ratio of structure 0.3

Density of structure 7800 kg=m3

Structural loss factor 0.02

Added mass 796 kg=m2

Stern lumped mass 188 tonnes

Bow lumped mass 200 tonnes

Cone half angle 24 deg

Cone length 9.079 m

Cone smaller radius 0.3 m

Density of fluid 1000 kg=m3

Speed of sound 1500 m/s
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4.1. Optimisation

The optimisation was conducted using the GCMMA for different cost functions, where eight different initial parameter
sets were used. The initial parameter sets were obtained by dividing each dimension of the three-dimensional parameter
space by three, where the intersections of the dividing borders form the initial parameter sets. The iterations were stopped
when the cost function values differed by less than 1�20 W between two subsequent iterations. An optimisation run for a
single initial parameter set required an average of 40 min on a computer cluster of six 3 GHz Pentium 4 CPUs. Each of the
processors has 2 Gb RAM. The cluster nodes were connected using a gigabit ethernet. Three different cost functions have
been investigated. For cost function (a), sound radiation due to propeller vibration was neglected. This means that re-
excitation of the hull due to the propeller pressure field caused by propeller vibration was not taken into account. The
sound power radiated from the submarine was only due to the pressure field from the hull and the propeller pressure
field due to the operation of the propeller in a non-uniform wake. A single axial exciting force at the propeller hub that
ranges from 1 to 100 Hz was considered. The force was weighted with ðo=DoÞ2, as it increases proportionally with the
square of the radian frequency. For cost function (b), the exciting force was weighted as for cost function (a), but sound
radiation due to propeller vibration has been taken into account. This means that the hull experiences re-excitation due to
the additional propeller pressure field. The contribution of the propeller pressure field due to propeller vibration to the
overall radiated sound power is also considered. For cost function (c), sound radiation due to propeller vibration was taken
into account. Furthermore it has been assumed that the exciting force is a superposition of the first four harmonics of bpf

and that the relative force amplitude is smaller for higher harmonics of bpf. Under the assumption that the propeller
diameter is half the hull diameter and the tip speed is limited to 40 m=s to avoid cavitation, for a 7-bladed propeller the
maximum fundamental bpf is approximately 25 Hz. The force amplitude for higher harmonics of bpf was assumed to be 1=n

times the force amplitude for bpf at a given shaft speed for the n th harmonic of bpf. The cost function is computed by
superposition of the contributions from the individual harmonics of bpf. The superposition can be considered implicitly
during integration over the frequency range. The resulting weighting factors for the exciting force are shown in Fig. 3 for
the three cost functions.

The optimisation results are given in Tables 3–5 for cost functions (a), (b) and (c), respectively. For cost function (a), six
out of the eight sets of initial parameters lead to a common minimum with a function value of around 7:19� 10�13 W (for
three digits of accuracy). The optimum RC parameters for the lowest function value of 7:1865� 10�13 W are given by
cr ¼ 4:3657� 105 kg=s, kr ¼ 3:0024� 108 N=m and mr ¼ 1 tonne. For cost function (b), seven out of the eight sets of initial
parameters lead to a common minimum with a function value of around 2:6745� 1013 W. The optimum parameters are
given by cr ¼ 1:1� 106 kg=s, kr ¼ 5:3818� 108 N=m and mr ¼ 1 tonne. For cost function (c), all eight sets of initial
parameters lead to a common minimum with a function value of around 8:3337� 10�14 W. The optimum parameters for
this function value are given by cr ¼ 5� 103 kg=s, kr ¼ 1:5� 107 N=m and mr ¼ 1 tonne. It should be noted that all of the
cost functions result in the lower limit of 1 tonne for the optimum RC virtual mass.

In order to compare the performance of the optimum RC parameters from the three cost functions, the radiated sound
power for the submarine model with and without the use of an RC are compared in Fig. 4, where structural excitation from
the propeller, dipole excitation due to the operation of the propeller in a non-uniform wake and dipole excitation due to
propeller vibration have been considered. The exciting force was weighted by ðo=DoÞ2. The peaks in the radiated sound
power at around 20, 45 and 70 Hz represent the first three axial hull resonances. The maximum sound radiation occurs at
the fundamental propeller/shafting system resonance which occurs at 37.3 Hz. Results were also obtained for the sound
power level using RC parameters according to Goodwin [8], in which the natural frequency of the RC is tuned to match the
natural frequency of the propeller/shafting system. The RC virtual mass was chosen to be at the lower parameter bound of
mr ¼ 1 tonne, as proposed by Goodwin. In addition, the lower limit of mr ¼ 1 tonne for the RC virtual mass was obtained
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Table 3
Optimisation results for cost function (a).

Parameters cr (kg/s) kr (N/m) mr (tonnes) Function value J (W) Outer iterations

Initial Optimum

3:70� 105 5:48� 105 7:68� 10�13 32

5:10� 108 7:29� 108

7:33� 103 2:87� 103

7:35� 105 4:30� 105 7:19� 10�13 10

5:10� 108 2:95� 108

7:33� 103 1:00� 103

3:70� 105 4:39� 105 7:19� 10�13 12

1:00� 109 2:98� 108

7:33� 103 1:00� 103

7:35� 105 4:37� 105 7:19� 10�13 12

1:00� 109 3:00� 108

7:33� 103 1:00� 103

3:70� 105 4:54� 105 7:19� 10�13 16

5:10� 108 2:79� 108

1:37� 104 1:00� 103

7:35� 105 1:10� 106 1:54� 10�12 6

5:10� 108 7:90� 108

1:37� 104 2:00� 104

3:70� 105 4:50� 105 7:19� 10�13 13

1:00� 109 2:75� 108

1:37� 104 1:00� 103

7:35� 105 4:42� 105 7:19� 10�13 14

1:00� 109 2:80� 108

1:37� 104 1:00� 103
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during the optimisation process, as well as in Ref. [9]. The RC virtual stiffness is obtained using [8]

kr ¼ 4p2f 2
psmr ; (24)

where fps ¼ 37:3 Hz is the fundamental resonance frequency of the propeller/shafting system. This yields an RC virtual
stiffness of kr ¼ 5:48� 1010 N=m. The RC virtual damping parameter is calculated using [8]

cr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mrkrq

4

�
6þ qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8qþ q2

qr �
; (25)

where q ¼ 4p2f 2
psmp=kr . This yields an RC virtual damping of cr ¼ 3:93� 106 kg=s. Using Goodwin’s method, a reduction of

the sound power level can be observed for frequencies between 10 and 75 Hz. For the majority of the frequency range, the
radiated sound power for a submarine model with no RC is significantly higher than for submarine model with an RC that
has been optimised using any of the cost functions. The curves for cost functions (a) and (b) are similar, but the radiated
sound power for cost function (b) is slightly lower for frequencies above about 70 Hz. This is attributed to the fact that the
sound radiation in the high frequency range is strongly correlated to propeller vibration which is accounted for in cost
function (b). A higher RC virtual damping obtained using cost function (b) therefore leads to a decrease of radiated sound
power at higher frequencies. For cost function (c), the sound radiation has been significantly decreased in the low
frequency range and slightly increased in the high frequency range. This means that sound radiation from the propeller
does not have a significant influence on the optimisation using cost function (c) due to the assumption that the amplitude
for higher harmonics of bpf is only a fraction of the amplitude for the fundamental bpf. This leads to a very resilient
propeller/shafting system due to the small RC virtual stiffness.

4.2. Sensitivity analysis

The sensitivity of the cost functions (b) and (c) to the RC virtual damping and stiffness is investigated, in order to assess
the influence of RC parameters on the radiated sound power. The sensitivity of the cost functions to the RC virtual mass has
been omitted as all investigated cost functions lead to the same RC virtual mass of 1 tonne. This value has also been found
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Table 4
Optimisation results for cost function (b).

Parameters cr (kg/s) kr (N/m) mr (tonnes) Function value J (W) Outer iterations

Initial Optimum

3:70� 105 1:10� 106 2:67� 10�13 9

5:10� 108 5:44� 108

7:33� 103 1:00� 103

7:35� 105 1:10� 106 2:67� 10�13 8

5:10� 108 5:35� 108

7:33� 103 1:00� 103

3:70� 105 1:10� 106 2:67� 10�13 8

1:00� 109 5:44� 108

7:33� 103 1:00� 103

7:35� 105 1:10� 106 2:67� 10�13 8

1:00� 109 5:36� 108

7:33� 103 1:00� 103

3:70� 105 1:10� 106 2:67� 10�13 11

5:10� 108 5:38� 108

1:37� 104 1:00� 103

7:35� 105 1:10� 106 9:18� 10�13 19

5:10� 108 1:14� 109

1:37� 104 2:00� 104

3:70� 105 1:10� 106 2:67� 10�13 9

1:00� 109 5:47� 108

1:37� 104 1:00� 103

7:35� 105 1:10� 106 2:67� 10�13 8

1:00� 109 5:46� 108

1:37� 104 1:00� 103
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previously by Dylejko [10]. A sensitivity analysis for cost function (a) has not been considered as cost functions (b) and (c)
are assumed to be more relevant as they include the sound radiation due to propeller vibration. For the sensitivity analyses
presented here, the optimum RC virtual mass parameter of 1 tonne has been used.

Results for cost function (b) are given in Fig. 5, where an increase of the RC virtual damping leads to lower values for J.
Two distinct local maxima of the cost function can be identified. The first local maximum occurs at the upper limit for
kr and the lower limit for cr. The second local maximum occurs at the lower limit for both the RC virtual stiffness kr and
damping cr . The variation of sound power with frequency is shown in Fig. 6 for the corresponding RC parameters. For the
first local maximum, the cost function is dominated by sound radiation at the fundamental propeller/shafting system
resonance. In this case, the fundamental resonance of the propeller/shafting system has been decreased by 10–27 Hz when
compared to the configuration with no RC. For the second local maximum, the cost function is dominated by the sound
power due to propeller vibration in the high frequency range as a decrease of the values for cr and kr involves an increase of
the propeller/shafting system axial flexibility. For the minimum cost function value, the fundamental hull resonance occurs
at around 15 Hz. Due to the frequency weighting, the contribution of the radiated sound power to the cost function is small
at this frequency.

The sensitivity of the cost function with respect to the virtual damping and the virtual stiffness of the resonance changer
is shown in Figs. 7 and 8, respectively. The plots indicate that the first maximum of the cost function at the lower limits of
the RC parameters is primarily sensitive to the RC stiffness, whereas the second maximum of the cost function at the lower
limit of the RC virtual damping and the upper limit of the RC virtual stiffness is primarily sensitive to the RC virtual
damping. It can be concluded that an increase in RC virtual stiffness reduces axial propeller vibration in the higher
frequency range. An increase in RC virtual damping will primarily lower sound radiation at the propeller/shafting system
fundamental resonance.

Cost function (c), where the decrease in amplitude for higher harmonics of bpf was considered, is shown in Fig. 9. The
values for J are much lower than in Fig. 5, as the influence of sound radiation at higher frequencies on the cost function has
been reduced. There is only one global maximum due to the propeller/shafting system resonance. Direct sound radiation
from the propeller in the high frequency range does not have a significant impact. As kr increases, the propeller/shafting
system fundamental resonance increases and the overall sound radiation becomes larger as the exciting force is weighted
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Fig. 4. Sound power level with no RC, with an RC tuned using Goodwin’s method [8] and using the optimum RC parameters for the three cost functions.

Table 5
Optimisation results for cost function (c).

Parameters cr (kg/s) kr (N/m) mr (tonnes) Function value J (W) Outer iterations

Initial Optimum

3:70� 105 5:00� 103 8:33� 10�14 9

5:10� 108 1:50� 107

7:33� 103 1:00� 103

7:35� 105 5:00� 103 8:33� 10�14 10

5:10� 108 1:50� 107

7:33� 103 1:00� 103

3:70� 105 5:00� 103 8:33� 10�14 10

1:00� 109 1:50� 107

7:33� 103 1:00� 103

7:35� 105 5:00� 103 8:33� 10�14 10

1:00� 109 1:50� 107

7:33� 103 1:00� 103

3:70� 105 5:00� 103 8:33� 10�14 16

5:10� 108 1:50� 107

1:37� 104 1:00� 103

7:35� 105 5:00� 103 8:33� 10�14 12

5:10� 108 1:50� 107

1:37� 104 1:00� 103

3:70� 105 5:00� 103 8:33� 10�14 12

1:00� 109 1:50� 107

1:37� 104 1:00� 103

7:35� 105 5:00� 103 8:33� 10�14 13

1:00� 109 1:50� 107

1:37� 104 1:00� 103
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with the square of the frequency. However, as the propeller/shafting system fundamental resonance becomes higher than
the upper frequency limit for the first harmonic of bpf, the value for J drops. This can be predicted from the weighting
function applied to the exciting force for cost function (c) shown in Fig. 3. The radiated sound power over the investigated
frequency range for the weighted exciting force is shown in Fig. 10. For the maximum value of J, the fundamental resonance
of the propeller/shafting system can be identified near 25 Hz. At the curve for the minimum value of J, the fundamental
resonance of the propeller/shafting system cannot be identified and the maximum sound radiation is due to the first axial
hull resonance. The sound radiation in the high frequency range is slightly higher for the RC configuration that corresponds
to a minimum for J. However, this does not have a significant influence on J, as J is dominated by contributions that can be
attributed to the first harmonic of bpf.

The sensitivity of the cost function to the RC virtual damping and stiffness is shown in Figs. 11 and 12, where a bpf

weighted exciting force has been used. Both, the RC virtual stiffness and damping have considerable influence on the cost
function at the global maximum. However, for a large part of the parameter space, the cost function is relatively stable. This
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Fig. 5. Cost function (b).
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Fig. 6. Radiated sound power for the minimum and maximum values of cost function (b).
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Fig. 8. Sensitivity of cost function (b) with respect to RC stiffness.
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Fig. 9. Cost function (c).

Maximum at cr = 5 × 103 kg/s, kr = 9.6 × 108 N/m
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Fig. 10. Radiated sound power for the minimum and maximum values of cost function (c).
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Fig. 11. Sensitivity of cost function (c) with respect to RC damping.
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Fig. 12. Sensitivity of cost function (c) with respect to RC stiffness.
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means that a wide variety of RC parameter configurations is available to provide efficient reduction of the overall radiated
sound power.
5. Conclusions

A fully coupled vibro-acoustic model for a submarine has been developed in order to find optimum design parameters
for a passive vibration attenuation device known as a resonance changer. The objective is to minimise the overall radiated
sound power due to propeller forces in the low frequency range. The overall radiated sound power is due to both sound
radiated from the hull as well as sound radiated from the propeller. Cost functions have been obtained by integration of the
frequency-weighted radiated sound power over the frequency range of interest. In order to use gradient based
optimisation, the sensitivity of the cost function to the design parameters was also computed using an adjoint operator
formulation. The globally convergent method of moving asymptotes has been applied in conjunction with the L-BFGS-B
method to find the optimum virtual damping, stiffness and mass parameters for the resonance changer. With respect to the
parameter space, eight equally distributed initial parameter sets have been used, where at least six optimisation runs
resulted in a common minimum.

The influence of sound radiation due to propeller vibration as well as the influence of the reduction in amplitude for
higher harmonics of the blade-passing frequency on the optimisation has been investigated. It has been shown that
inclusion of sound radiation due to propeller vibration leads to a higher RC virtual damping parameter which reduces axial
vibration of the propeller/shafting system, and therefore sound radiation due to propeller vibration. When the reduction in
amplitude for higher harmonics of bpf is considered, the sound radiation due to propeller vibration becomes insignificant
which leads to a very resilient configuration of the RC with a low RC virtual stiffness and damping.
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For the more realistic cost functions which consider sound radiation due to propeller vibration, the parameter space has
been visualised by keeping one optimum parameter constant. The minimum and the maxima have been analysed. For the
global minimum, the fundamental resonance of the propeller/shafting system occurs below the fundamental hull
resonance and does not have a significant influence on the cost function value due to the frequency weighting.
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